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High-throughput single-cell density 
measurements enable dynamic profiling  
of immune cell and drug response from 
patient samples
 

Weida Wu    1,2, Sarah H. Ishamuddin1, Thomas W. Quinn    3,4, Smitha Yerrum3,4, 
Ye Zhang    1, Lydie L. Debaize5, Pei-Lun Kao3,4, Sarah Marie Duquette1,2, 
Mark A. Murakami    5, Morvarid Mohseni6, Kin-Hoe Chow3,4, 
Teemu P. Miettinen    1, Keith L. Ligon    3,4,7,8,9   & Scott R. Manalis    1,2,7,10 

Cell density, the ratio of cell mass to volume, is an indicator of molecular 
crowding and a fundamental determinant of cell state and function. However, 
existing density measurements lack the precision or throughput to quantify 
subtle differences in cell states, particularly in primary samples. Here we 
present an approach for measuring the density of 30,000 single cells per 
hour by integrating fluorescence exclusion microscopy with a suspended 
microchannel resonator. This approach achieves a precision of 0.03% 
(0.0003 g ml−1) for cells larger than 12 μm in diameter. In human lymphocytes, 
we discover that cell density and its variation decrease as cells transition from 
quiescence to a proliferative state, suggesting that the level of molecular 
crowding decreases and becomes more regulated upon entry into the cell 
cycle. Using a pancreatic cancer patient-derived xenograft model, we find that 
the ex vivo density response of primary tumour cells to drug treatment can 
predict the in vivo tumour growth response. Our method reveals unexpected 
behaviour in molecular crowding during cell state transitions and suggests 
density as a biomarker for functional precision medicine.

Cell density is determined by the cell’s dry mass composition and the 
fraction of cell volume occupied by water, which reflects its molec-
ular crowding level. Although cell mass and volume can vary up to 
50% in proliferating cells, cell density is tightly regulated to maintain 
an optimal level of molecular crowding1–3. Environmental cues such 
as nutrient depletion and changes in osmolarity are known to alter 
molecular crowding, which impacts cellular biochemistry by altering 
the diffusion rate and protein conformation1,4,5. The coupling between 
crowding level and cell physiology makes cell density a key proxy for 
characterizing fundamental cellular processes such as proliferation, 
apoptosis, metabolic shifts and differentiation1,3, indicating its poten-
tial as a biomarker for cellular fitness and drug response. Studies on 

single-cell organisms such as bacteria and yeast have reported that 
molecular crowding levels substantially change during cell state transi-
tions between proliferation and dormancy, and density is thought to 
acutely reflect these transitions5–8. Whether such connections between 
density and proliferation exist in primary mammalian cells remains 
unclear, in part due to limitations in existing methods.

A major challenge for measuring cell density is achieving high sam-
pling throughput together with high precision. Traditional gradient 
centrifugation methods assess cell densities on a populational level, but 
are slow and require a large sample size, which limits their use for study-
ing transient biological processes. Single-cell measurements reveal the 
heterogeneity of cell density within a population, providing insight into 
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Results
Platform design and characterization
To couple single-cell mass and volume measurements, our system is 
composed of an SMR cantilever with microfluidic inlets for receiving a 
stream of single cells and a fluorescence microscopy set up positioned 
at the entry of the resonator chamber (Fig. 1a). The fluorescence level 
emitted from the detection region is continuously monitored by a 
photomultiplier tube (PMT). To achieve the fluorescence exclusion 
volume measurements, cells are suspended in a fluorescent media that 
contains cell-impermeable dye-conjugated dextran. When there is no 
cell present at the detection region, the PMT detects a high fluorescence 
baseline from the media. As the cell passes through, the fluorescence 
level decreases proportionally to the volume of the cell. The raw volume 
signal is computed by taking the ratio of the change in fluorescence 
level to the baseline height (Fig. 1b,c).

Cells flow through the SMR after volume measurement and the 
buoyant mass signal can be resolved from the change in SMR resonance 
frequency17,26. Cell density, or buoyant density, is then computed by

ρcell =
buoyant mass

volume
+ ρfluid. (1)

We profiled a mouse lymphocytic leukaemia cell line, L1210, and 
simultaneously obtained single-cell buoyant mass and volume read-
outs with a throughput of >30,000 cells per hour (Fig. 1b,d).

We then characterized the accuracy of the volume and buoyant 
mass measurements. Using five cell lines with median cell diameters 
ranging from 12.6 to 21.0 μm, we found a linear correlation (Pearson 
correlation coefficient R2 = 0.9986) between cell volume measured 
by Fxm and ground-truth volumes determined by a Coulter counter 
(Supplementary Fig. 1a,b). Similarly, using five populations of mono-
dispersed polystyrene beads ranging from 5 to 9 µm in diameter, we 
found a linear correlation (Pearson correlation coefficient R2 = 0.9998) 

density regulation. Magnetic levitation methods determine the density 
of single cells by balancing the cell’s gravity and the buoyancy exerted by a 
paramagnetic medium9,10. Methods detecting dry-mass density (dry mass 
over total volume), such as quantitative-phase microscopy or Raman 
imaging coupled with cell volume measurements, provide alternative 
density measurements11–16. Although these methods provide subcellular 
resolution and single-cell tracking, their applications are limited by low 
throughput, where a typical experiment includes tens to hundreds of 
single cells when measuring cell density. The suspended microchannel 
resonator (SMR) is a microfluidic mass sensor that has been used to 
measure single-cell density by measuring the buoyant mass of a cell in 
two types of fluids with different densities17–20. However, the throughput 
of this approach is also limited to a few hundred cells per experiment 
because it requires cells to be sequentially measured in two types of fluids.

SMR and quantitative-phase microscopy devices have already 
achieved a throughput of tens-to-hundreds of thousands of cells 
per experiment21–23. With a streamlined volume-sensing unit, the 
same throughput could be achieved for measuring cell density. 
Fluorescence exclusion microscopy (fxm) provides a volume meas-
urement compatible with existing SMR devices. Fxm measures the 
exclusion of fluorescence intensity induced by single cells that are 
suspended in a highly fluorescent media with cell-impermeable dye 
molecules. This method has been adapted to measure single-cell 
volumes of various model systems including bacteria, yeast and 
mammalian cells24,25.

Here, we present a fluorescence exclusion-coupled SMR (fxSMR) 
platform that simultaneously measures single-cell buoyant mass and 
volume, which allows us to profile cell density with a throughput of over 
30,000 cells per hour and a precision of 0.03% (0.0003 g ml−1) for cells 
larger than 12 μm in diameter. We show three advances that are enabled 
by our high throughput and precision. We identify unexpected density 
heterogeneity, reveal molecular crowding associated changes during cell 
state transition and validate density as a new biomarker of drug response.
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Fig. 1 | FxSMR enables high-throughput and high-precision single-cell density 
measurements. a, A schematic showing the system design. A fluorescence 
detection set up is positioned above the SMR microfluidic chip; the green shaded 
area indicates the fluorescence detection region and black arrows indicate the 
flow direction of single cells (blue). b, Raw signals from SMR (orange) and the 
photomultiplier tube (green) when measuring L1210 cells. Each peak indicates the 
passing of a single cell. c, A zoomed-in image of b, highlighting the shape of SMR 
and PMT signals for a single cell, and the calculation of cell volume from the drop 

in fluorescence signal (Emdrop) from the fluorescence baseline (Embaseline). d, A 
scatter plot of cell mass versus volume for a population of L1210 cells as measured 
in ~20 min. n refers to the number of individual cells. e, Representative plots of 
volume, mass and density of a single hydrogel microparticle that was measured 
repeatedly using fluidic trapping; The measurement precision (CV) is reported 
for each metric (mean ± s.d. for 5 independently trapped particles). n refers to the 
number of repeat measurements for the individual particle shown in the plots. 
Figure created with BioRender.com.

http://www.nature.com/natbiomedeng
http://www.biorender.com


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-025-01408-6

between the SMR frequency shifts and the expected buoyant mass 
calculated from bead sizes (Supplementary Fig. 1c,d).

To characterize measurement precision, we repeatedly measured 
the buoyant mass, volume and density of single hydrogel particles in 
the range of 12.5–14.4 μm in diameter and naive B cells in the range of 
6.7–7.0 μm in diameter (Supplementary Fig. 1e–g). The average coef-
ficients of variation (CVs) from five independently trapped hydrogel 
particles were 1.3% (volume), 1.1% (buoyant mass) and 0.03% (density) 
(Fig. 1e and Supplementary Fig. 1e–g). We found that density measure-
ment CV increased to 0.30% for naive B cells due to the size-dependent 
precision of our volume measurement (Supplementary Fig. 1f,g and 
Supplementary Note 1). These results demonstrate that the fxSMR 
platform achieves a 10–100-fold increase in throughput over previ-
ous approaches9–17,20 while maintaining high accuracy and precision.

Density variation in proliferating mammalian cells
Next, we sought to examine the heterogeneity of single-cell densi-
ties within a population, as enabled by the high-throughput nature of 
our density measurement. Most biological features with homeostatic 
regulatory mechanisms tend to exhibit a Gaussian distribution27. An 
exception from this rule is the distribution of cell size, which follows 
a log-normal distribution due to cell growth being exponential28,29. A 
deviation from the Gaussian distribution would suggest the existence 
of a more complex control mechanism compared with a simple nega-
tive feedback mechanism.

We started by characterizing five suspension-grown mam-
malian cell lines, L1210, THP-1, BaF-3, FL5.12 and s-Hela. For sta-
tistical analysis, we gated on the viable cell population using a 
viability marker (Supplementary Note 2). The CV of cell density 
in all five models are below 0.6%, while the CV of mass and vol-
ume are considerably larger, with a range between 20% and 30% 
(Fig. 2a). This is consistent with previous reports on density heter-
ogeneity in mammalian cells1,18. Since the density CV is more than 
tenfold higher than our measurement precision (Figs. 1e and 2a), 
 our approach is well suited to examine the shape of density distribu-
tions. Unexpectedly, cell densities in all five cell lines did not fit to a 

normal distribution (Fig. 2b and Supplementary Fig. 2a). We also found 
that a log-normal distribution did not fit well with cell density when 
compared with mass and volume (Supplementary Fig. 2a–c). The den-
sity distributions were asymmetric and better fitted by a distribution 
model (stable distribution) that accounts for the ‘heavy-tailed-ness’ 
of the distribution (Fig. 2b and Supplementary Fig. 2a,d). Consistent 
with this, the kurtosis factors of the density distributions were all 
higher than 3, whereas a normal distribution has kurtosis of 3 (Fig. 2c). 
Moreover, since the hydrogel particle density measurements displayed 
normal distributions (Supplementary Fig. 2e), the higher kurtosis in 
cells is biological rather than a reflection of measurement bias.

We next considered the cell cycle as a potential source of density 
variation. We used cell size as a proxy for cell cycle progression because 
they are tightly correlated28,30–33. From the five suspension cell line mod-
els, we did not observe any systematic correlation between cell mass 
and density, although individual cell lines show distinct features of cell 
cycle-dependent density (Fig. 2d and Supplementary Fig. 3). These 
results confirm that for proliferating suspension-grown mammalian 
cells, cell cycle progression (within interphase) does not introduce 
changes in cell density that would be shared between cell lines. Given 
prior evidence that cellular dry mass density does not vary during the cell 
cycle34, the molecular crowding level appears largely independent of the 
cell cycle stage within interphase. Furthermore, in every cell line, both 
light (<median buoyant mass) and heavy cells (>median buoyant mass) 
display kurtosis higher than 3, suggesting the heavy-tailed distributions 
are not due to a particular cell cycle stage (Supplementary Fig. 2f).

Density changes during cytotoxic T cell activation
Our results indicate that cell density does not systematically change 
when cells are cycling in interphase, but previous studies have revealed 
that cell cycle exit due to cell senescence can alter density35. Similarly, in 
single-cell organisms, cells can enter a quiescence state where the cells 
display higher molecular crowding (that is, higher density) and smaller 
cell size5–7. We therefore examined whether density homeostasis is spe-
cific to cycling cells (Fig. 3a). To study this, we focused on models where 
we can compare cell density in quiescence and proliferative states.
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Fig. 2 | Single-cell densities have a tight and non-Gaussian distribution.  
a, The CV of density, buoyant mass and volume for five cell lines. Each marker 
represents an independent replicate; the short horizontal bars denote mean 
of density, buoyant mass and volume in the corresponding colour; the dashed 
red line denotes the system precision of density measurements. b, The density 
distribution of L1210 cells with lines indicating normal (dotted red), log-
normal (orange) and stable (blue) distribution fitting. n refers to the number of 

individual cells. c, The kurtosis factor of the five cell lines. Each marker represents 
an independent replicate. d, Representative scatter plot of mass versus density 
for the five cell lines. The red lines and shaded red areas indicate median ± s.d. of 
cell density in a moving filter along the buoyant mass axis. The grey points depict 
single cells and n values refer to the number of individual cells. For a, c and d, 
n = 3 biological replicates for L1210, THP-1, FL5.12 and s-Hela and n = 2 biological 
replicates for BAF-3.
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First, we studied human lymphocytes from peripheral blood 
that circulate as quiescent cells and can readily become activated 
and proliferating effector cells after encountering external stimuli. 
We performed daily measurements of CD8+ T cells from two human 
donors after anti-CD3 and anti-CD28 activation (Fig. 3b,c). During 
the first 2 days post activation, the density CV decreased from ~1% 
to ~0.4%, suggesting a stronger density regulation as T cells start to 
proliferate (Chi-square variance tests reported P values <0.00001 
for both donors) (Supplementary Fig. 4g). In the same time frame, 
T cells increased their size substantially while decreasing average 
density from ~1.08 to ~1.05 g ml−1 (Fig. 3d,g and Supplementary 
Fig. 4a). We then sought to determine whether this decrease in aver-
age cell density reflects changes in molecular crowding. As a proxy 
for molecular crowding, we measured the fraction of osmotically 
active water content over total cell volume by applying the Boyle 
Van’t Hoff relation, where the volume of a cell is inversely propor-
tional to the external osmolality36–38. We measured the active water 
content of T cells by profiling the volumes of each sample under two 
different osmolarity conditions (Supplementary Fig. 4b). We found 
that T cells increased their water content from ~63% to ~80% of total 
cell volume within the first 2 days of activation (Supplementary 

Fig. 4c,d), suggesting a lower crowding level before cells start to 
divide. The relationship between cell density and intracellular 
molecular concentrations is discussed in more detail in Supple-
mentary Note 3.

We confirmed our findings by studying different cellular models 
of cell quiescence and proliferation. Similar trends in cell density and 
size were observed in activated and proliferative human naive B cells 
(Fig. 3b,e–g and Supplementary Fig. 4e–g). In addition, we studied 
a pro-B lymphocytic murine cell line FL5.12, which is interleukin-3 
(IL-3) dependent and exits the cell cycle following IL-3 depletion39. As 
with the human lymphocytes, we observed that quiescent FL5.12 cells 
have a higher density owing to increased crowding and higher density 
CV when compared with their proliferative state (Fig. 3g and Supple-
mentary Fig. 5). We performed small particle trapping experiments to 
validate that the observed differences in density CV are predominantly 
driven by biological variability rather than increased measurement 
noise in small quiescent cells (Supplementary Note 1). Overall, our 
results reveal that lymphocytes maintain lower cell density and tighter 
density homeostasis when proliferating. This suggests that density 
regulation is coupled to the molecular machinery responsible for cell 
growth and/or proliferation.
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Fig. 3 | Density profiling of human lymphocyte activation shows crowding 
transitions between quiescence and proliferative states. a, A qualitative 
model of biophysical changes associated with the transition between quiescence 
and proliferative states. b, Schematics showing the activation process of human 
CD3+/CD8+ T cell and human naive B cell and subsequent profiling by fxSMR.  
c, Cell count versus time (days post activation) for T cells obtained from two 
donors (red and pink). The dotted line denotes the expected seeding density.  
d, Scatter plots of mass versus density showing the T cell dynamics post 
activation for donor 1. The blue areas indicate the density range of quiescent T 
cells at day 0, with upper and lower bounds indicating the 1st and 99th percentile 
of the density distribution. CVs of density at day 0, 1, 2 and 5 are 1.008%, 0.453%, 
0.392% and 0.627%, respectively. n refers to the number of individual cells.  

e, Representative cell count versus time (days post activation) for naive B cells 
obtained from two donors. The B cells were either activated (solid orange lines) 
or kept as inactive naive B cells (dotted grey line). f, Representative scatter plots 
of mass versus density showing B cells at day 0 and 3 post activation. The blue 
areas indicate the density range of quiescent B cells similar to d. CVs of density at 
day 0 and 3 are 1.850% and 0.384%, respectively. n refers to the number  
of individual cells. g, The median cell density and the CV of density for quiescent 
and proliferating lymphocytes. Two-tailed paired t-tests yielded  
P values of 0.0049 for median density 0.0269 for density CV, from eight 
biological replicates, including T cells (red), B cells (orange) and murine pro-B 
lymphocytic cell line FL5.12 (blue). Figure created with BioRender.com.
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Density as a biomarker for drug response
Since changes in cell density can reveal state transitions related to cell 
proliferation, we sought to determine whether it could be used as a 
biomarker for assessing the ex vivo treatment response of cancer cells. 
A major goal for precision cancer medicine is to match each patient 
with the most effective drug treatment. Functional precision medicine 
(FPM) approaches, which involve drug testing performed directly on 
patient tumour cells, have emerged in recent years to help select the 
optimal drug treatment at the time of diagnosis or relapse40. In these 
assays, live cells isolated from patient tumours are treated with a panel 

of candidate drugs ex vivo, and drug responses are assessed for their 
ability to predict patient outcomes41. Proliferation-based assays for drug 
response work well in cell line models that have adapted to thrive in ex 
vivo conditions. However, primary cancer cells often do not proliferate 
or require specific culture conditions to stimulate proliferation ex vivo, 
thereby increasing risk of phenotypic drift42. Consequently, there is a 
need for predictive FPM biomarkers that minimize phenotypic drift by 
assessing ex vivo treatment response at short timescales where cells are 
not proliferating. A number of studies have shown that cell mass can 
function as a predictive biomarker with 1–2 day turnaround times21,22,43,44. 
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Fig. 4 | Density demonstrates robustness as a hyperacute biomarker for 
predicting long-term in vivo drug response. a, Schematics showing the 
paradigm of functional biomarkers for predicting long-term in vivo treatment 
response. b, The in vivo treatment response measured by tumour volume 
(one mouse per condition) data47. c, CellTiter-Glo dose response at day 6 after 
treatment, with three biological replicates per drug concentration. The slopes 
represent dose response fitting. d, Representative scatter plot of single-cell mass 
versus density at 36 h post treatment. The red box shows the gating of viable cells. 
n refers to the number of individual cells. e, Viable single-cell densities, with red 
dots denoting the median densities. f, Calculation of density response, with the 
dotted line indicating where the density response is 0 (median density equal to 
the DMSO control). g, The 36 h density responses for gemcitabine and trametinib 

at multiple concentrations. Data indicate mean ± s.e.m.; n = 3, 3, 4, 4 and 6 
biological replicates for ascending concentrations of gemcitabine, and n = 3, 3, 3, 
4 and 5 biological replicates for ascending concentrations of trametinib. h, The 
average density (left) and buoyant mass (right) responses following different 
treatments. The P values were generated from two-sided unpaired parametric 
t-tests. On each box and whiskers plot, the central mark denotes the median, the 
edges represent the 25th/75th percentiles and the whiskers extend to 1.5× the 
interquartile range away from the box edges. n denotes the number of biological 
replicates. i, The ROC analysis of density (solid lines) and buoyant mass (dotted 
lines) responses using data from h. The area under the curve (AUC) scores 
denote the predictive powers of density and mass response. Figure created with 
BioRender.com.
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We hypothesized that cell density response could also function as a 
hyperacute predictive biomarker even in the absence of proliferation, 
given that increases in crowding level (that is, cytoplasmic condensa-
tion) have long been regarded as an early indicator of apoptosis18,45,46.

To validate the density biomarker, we used a patient-derived 
xenograft (PDX) model as a source of cells to benchmark the density 
response against previously established FPM assays of proliferation 
and cell mass measurements (Fig. 4a). The pancreatic ductal adeno-
carcinoma model, NIBRX-1362, harbours the KRAS G12D mutation 
and has known in vivo drug response profiles from a previous study47 
(Fig. 4b). Repeat testing confirmed the model exhibited in vivo sensi-
tivity to trametinib, a MEK pathway inhibitor, and only mild response 
to gemcitabine, a chemotherapy. We next isolated dissociated single 
cells derived from the untreated PDX tumours and assessed prolif-
eration response using CellTiter-Glo at 6 days after ex vivo drug treat-
ment. Using this approach, we noted a marked ex vivo tumour cell 
response to trametinib and a less effective response to gemcitabine 
(half-maximum inhibitory concentration of 0.172 nM and 8.561 nM, 
respectively) (Fig. 4c) thereby validating that the ex vivo response 
agreed with the in vivo results at an ‘acute’ 6 day time frame.

To determine whether single-cell density can achieve the same 
conclusion but at a hyperacute timescale, we profiled single-cell den-
sity and mass using fxSMR at 24 and/or 36 h post drug treatment, using 
similar conditions to the CellTiter-Glo assay. We first applied a gating 
based on density and buoyant mass to select viable cells (Fig. 4d and 
Supplementary Note 2), and then for every drug-treated sample, we 
subtracted the median density of the sample from the median density 
of the control (Fig. 4e,f) to obtain a density response for each treat-
ment. A dose-response analysis demonstrated that both trametinib 
and gemcitabine resulted in density response when compared with 
the dimethylsulfoxide (DMSO) treatment (n = 9 separate experiments 
and PDX-bearing mice). The half-maximum effective concentration 
for trametinib treatment was 0.017 nM, and could not be stably fitted 
for gemcitabine treatment (Fig. 4g). At high concentrations (≥10 nM), 
trametinib treatments displayed a greater and more significant den-
sity response compared with gemcitabine (median density response 
of 0.0027 g ml−1 and 0.0009 g ml−1, accordingly), which agreed with 
the long-term in vivo response and the CellTiter-Glo results (Fig. 4h).

Furthermore, when benchmarking the ability to distinguish between 
treatment responses, we found that buoyant mass detected a significant 
response from trametinib treatment, but could not resolve a significant 
gemcitabine response (Fig. 4h). To further test whether the density 
response is more likely to align with the long-term in vivo response, we 
performed a receiver operating characteristic (ROC) analysis on the 
robustness of a binary prediction of the PDX model’s in vivo treatment 
sensitivity, generated from comparisons of ex vivo drug response against 
the DMSO control (Fig. 4i). The ROC analysis showed that, for both treat-
ments, density has a stronger predictive power than mass (for trametinib, 
density AUC of 0.998 and mass AUC of 0.823; for gemcitabine, density 
AUC of 0.678 and mass AUC of 0.480). Since fxSMR readouts were col-
lected from a cohort of nine replicates of the PDX model, the strong 
AUC score for predicting trametinib response also suggests that ex vivo 
cell density response is highly robust in resolving the long-term in vivo 
response of an effective treatment observed in this PDX model.

Discussion
We have shown that fxSMR can precisely measure single-cell density 
with 10–100× higher throughput than existing methods. With our 
approach, we discovered that cell density and molecular crowding differ 
between proliferating and quiescent lymphocytes. This discovery bears 
resemblance to similar observations in unicellular organisms, where 
the increased molecular crowding in the quiescence state has been 
associated with slower signalling and lowered metabolic activity4,5,48. It 
is possible that the high cell density we observed in quiescent mamma-
lian cells has a similar role where non-proliferating and largely inactive 

cells conserve energy. More broadly, our results suggest a conserved 
mechanism that couples the regulation of cell density and molecular 
crowding to the regulation of cell state between quiescence and pro-
liferation. It is also worth noting that a seemingly small change in cell 
density (<5%) can correspond to relatively large changes in molecular 
concentrations inside the cell, with potential implications for phase 
transitions and enzymatic reaction rates (Supplementary Note 3).

Our results also reveal insights into the regulation of cell density 
homeostasis. We discovered that proliferating mammalian cells display 
less cell-to-cell density variability than quiescent cells, indicating that 
the strength of density homeostasis is dependent on the cell cycle 
machinery responsible for cycling cell state. However, cells in early and 
late interphase display similar density homeostasis, ruling out density 
regulation by a G1, S or G2 cell cycle stage specific mechanism. Further-
more, our work revealed that cell density distributions are non-Gaussian 
in proliferating cells, thus narrowing down the space of theoretical 
models that could explain how density homeostasis is maintained.

In addition to its potential for exploration of the biology of 
density homeostasis, our approach may provide a much-needed 
method for functional precision medicine in patients. The ability of 
high-throughput single-cell density measurements to generate drug 
response data in the hyperacute non-proliferative window is a unique 
capability when compared with other functional precision medicine 
approaches. For example, organoid testing typically requires longer 
time periods (for example, weeks) for ex vivo expansion to generate a 
sufficient number of cells for assessments.

There are two important limitations of our drug response study. 
First, since we have not measured density response across multiple 
patient models, the broader predictive capability across heterogeneous 
cancers will require future studies. Second, since we have only meas-
ured the density response from two drugs, the extent to which density 
response will generalize across other drugs with a wide range of mecha-
nisms remains unknown. However, previous studies with cell lines have 
shown that drugs with various mechanisms of action can uniformly per-
turb cell density18,19. With our high-throughput approach, we believe that 
many drugs can now be more readily profiled on patient samples within 
a hyperacute time window, thereby enabling clinical studies for assess-
ing the effectiveness of density response in guiding patient treatment.

Methods
System set up
The design of the SMR devices were reported in ref. 49. The fabrica-
tion was carried out at CEA-LETI in Grenoble, France, with procedures 
outlined in refs. 17,26. An SMR device was actuated by a piezo-ceramic 
plated underneath the chip, which allows the suspended cantilever 
to vibrate at the resonant frequency of its second vibrational mode. 
Vibrational frequencies were measured by piezo resistors at the base 
of the cantilever. A closed-loop feedback system was applied to ensure 
consistent actuation at the resonant frequency, with a predefined delay 
time between the piezo resistor readout signal and the actuator driv-
ing signal. The driving signal was amplified to achieve high-oscillation 
amplitude as well as low-frequency noise.

The optical set up was built with an epi-fluorescence microscope 
(Nikon LV-UEPI2), using similar designs as previously described50. 
To reduce the noise in fluorescence measurements resulting from 
mechanical instabilities, two additional optical posts (Thorlabs) were 
installed to better support the optical pedestal (Thorlabs) between 
the microscope and the lower breadboard that holds the SMR device. 
Fluorescence excitation was provided by a laser-LED multiband illu-
minator (Lumencor SPECTRA Light engine). A 50×/0.55 objective lens 
(Nikon-CFI, LU Plan ELWD WD 10.1 mm) was used, and the emission 
collection area was defined by two orthogonally placed adjustable 
mechanical slits (Thorlabs VA100/M). The emission light was collected 
using a complementary metal-oxide semiconductor camera (FLIR, 
BFS-U3-13Y3M-C) and photomultiplier tubes (Hamamatsu, H10722-20). 
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A 10/90 beam splitter was positioned in front of the camera to direct 
10% of all emission light to the camera. For each photomultiplier tube, 
the light path consisted of a dichroic mirror (Semrock), an emission fil-
ter (Semrock) and a convex lens (Thorlabs LA1027). The emission light 
was separately collected into five PMTs with the following emission 
filter ranges: 438/24, 515/30, 595/31, 678/70 and 809/81 nm. Volume 
measurements from fluorescein isothiocyanate (FITC)–dextran dye 
molecules were conducted with ~500 mW excitation light (475/28 nm) 
and the emission light was captured within the 515/30 nm band. The 
exact optics configurations are shown in Supplementary Fig. 6a. For 
communications with the PMTs, reference voltages were set by ana-
logue output modules (National Instruments NI-9263) and the out-
put signals were collected by voltage modules (National Instruments 
NI-9215) were used.

System operation
SMR devices have four fluidic inlets that are connected to the sample, 
buffer and waste reservoirs with 0.007 inch inner-diameter fluorinated 
ethylene propylene tubing (IDEX Health & Science). Pressurized house 
air was used to drive the fluidics. Flow directions were controlled by 
electronic pressure regulators and solenoid valves, through a custom 
software in LabView2020. The typical flow rate was around ~10 nl s−1, 
as estimated by the time for an average particle to travel through the 
SMR cantilever.

For a typical single-cell density measurement, cells were resus-
pended to a final concentration of ~1 million cells ml−1 in the fluorescent 
buffer. The buffer was made by dissolving 2,000 kDa FITC–dextran 
(Sigma, FD2000S) in PBS or cell culture media to a final concentra-
tion of 10 mg ml−1. Each sample was typically measured for 15–20 min. 
Before each experiment, using a camera, we first manually set the 
location of the light excitation spot at the centre of the microfluidic 
channel, adjacent to the entrance to the SMR cantilever. Then, we 
adjusted the microscope aperture diaphragm to ensure that the exci-
tation spot is wider than the microfluidic channel. During the run, the 
sample reservoir was stored on ice to minimize endo/exocytosis. After 
each measurement, the SMR cantilever was flushed with 50% bleach 
in water and subsequently with PBS to minimize any accumulation 
of debris or air bubbles along the channel wall. To ensure consistent 
volume measurement across different samples, we adjusted the posi-
tioning of rectangular slits at the start of each experiment to define 
the emission collection area (Supplementary Fig. 6b,c). Given that 
the channel height was fixed, the slits configuration determined the 
total fluorescence excitation volume, which was used to calculate cell 
volume. Slits configuration was usually set to 20 µm (width) by 40 µm 
(length) for a typical sample. The width was further adjusted for sam-
ples with very small average cell sizes (naive T cells), and large average 
cell sizes (s-Hela). Data acquisition was enabled by custom measure-
ment software in LabView2020 for both SMR and optical readouts. 
SMR data were acquired at a data rate of ~20 kHz and light-intensity 
readouts from PMTs were acquired at a rate of ~50 kHz. Subsequent 
fxSMR data analysis is described in Supplementary Note 4

Calibration of volume and buoyant mass measurement
Calibration of the raw volume signal from fxSMR to the standard unit 
(femtolitre) was done with the L1210 cell line. Before each experiment, 
we first measured a cell line population in PBS suspension using a coul-
ter counter (Beckman Coulter Multisizer 4, 100 µm aperture) to obtain 
a cell volume distribution with the standard unit. Then, we measured 
the cells using fxSMR and acquired a distribution of their raw volume 
signals. From these two distributions, we first took the median of each 
measurement and calculated their ratio as an estimated calibration 
factor (volume in fl/volume in a.u.). Then we refined the calibration 
accuracy by looping through a range of potential calibration factors 
(±3 a.u. around the starting calibration factor derived by medians) to 
minimize the difference between the two distributions (the summed 

difference in probability density between each percentile in the dis-
tribution). This optimization step led to a final calibration factor. SMR 
frequency peaks were calibrated (hertz to picogram) with 8 µm poly-
styrene beads with a known density of 1.05 g ml−1 (Thermo Fisher, Duke 
Standards). Calibration calculations for both cell volume and buoyant 
mass were conducted using MATLAB.

Accuracy and precision characterization
We characterized the accuracy of fxSMR volume measurement by bench-
marking against coulter counter volume measurement using five dif-
ferent cell lines, with median cell size ranges from ~1,000 to ~5,000 fl. 
The volume of each cell line sample was first determined by a Coulter 
Counter (Beckman) and subsequently measured by fxSMR. From the 
single-cell volume distributions measured by the two platforms, the 
median value of each sample was computed and used to calculate cor-
relation score between fxSMR measurements and ground-truth cell 
volumes (Supplementary Fig. 1a,b). We characterized the accuracy of 
fxSMR buoyant mass measurement with NIST traceable polystyrene 
beads (Thermo Fisher) of five different sizes between 5 μm and 9 μm in 
diameter (Supplementary Fig. 1c,d). The precision of fxSMR was deter-
mined by repeatedly measuring the same hydrogel particle (deformable 
poly-acrylamide-co-acrylic acid microparticle), donated by the Morgan 
Huse lab at the Sloan Kettering Institute. Each particle was pushed 
forwards and backwards through the cantilever at the rate of ~30 s per 
measurement for a duration of ~20 min. The trapping mechanism was 
achieved by oscillating the pressure setting between the left and right 
side of the cantilever to generate forwards and backwards pressure 
gradients. Real-time SMR frequency analysis was used to recognize the 
passage of a particle and the pressure setting was then switched after 
a predefined period of time (50–200 ms) after each passage. Fluidic 
controls were carried out through a custom software in LabView2020. 
The ground-truth particle size was determined from 60× brightfield 
images taken using an imaging flow cytometer (Amnis ImageStream, 
Cytek), with INSPIRE ImageStream System Software. Particle areas 
were calculated using automated feature identification using the IDEAS 
image analysis software. Particle volumes were subsequently calculated 
using GraphPad Prism. The simulation on the effects of measurement 
uncertainty on cell population density variability was written in MATLAB 
R2021a. The algorithm first defined input parameters, including the 
proposed mean cell density (μ = 1.08), sample size (n = 5,000), the range 
of population CVs (0.1% to 1.2%) and the CVs of the measurement noise 
(0.033% to 0.294%). The algorithm then proceeded with two nested 
loops. The outer loop iterated through the predefined noise CV values, 
while the inner loop varied the population CV values. For each combina-
tion, the algorithm generated a cell density population using a normal 
distribution with the specified mean and standard deviation based on 
the current population CV. It then added Gaussian noise to each sample, 
with the noise standard deviation calculated as a product of the noise CV 
and the sample value. The mean and standard deviation of the simulated 
cell population were used to calculate the CV of the simulated density 
distribution. This computed CV was used to compare different combina-
tions of population and measurement noise variability.

Statistics
Statistical analysis was conducted using MATLAB and GraphPad Prism. 
Statistical significance between groups or different experimental 
conditions was determined using an unpaired parametric t-test in 
Fig. 4 and a paired parametric t-test in Fig. 3 and Supplementary Fig. 5. 
A Chi-square variance test for Supplementary Fig. 4g was performed 
with vartest() MATLAB function. Distribution fitting over single-cell 
data in Fig. 2 was conducted with the fitdist() MATLAB function with 
specification on distribution type such as normal, log-normal or stable. 
The kurtosis and skewness factor of single-cell distributions were calcu-
lated by kurtosis() and skewness() MATLAB functions. One-sample Kol-
mogorov–Smirnov tests in Supplementary Fig. 2a–c were conducted 
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by first fitting the data with the intended distribution type using the 
fitdist(), and then the kstest() MATLAB function was performed to 
test the data against the cumulative distribution function of the fitted 
model. Bootstrap analysis for Fig. 2 and Supplementary Fig. 2a–c was 
carried out with the bootstrp() MATLAB function with 1,000 iterations. 
ROC analysis in Fig. 4 was conducted with the perfcurve() MATLAB 
function. A binary sensitivity label was given as the outcome variable, 
with trametinib-treated samples as sensitive and gemcitabine-treated 
conditions as non-sensitive.

Water content measurement by osmotic shocks
Osmotically active water content was measured by volume exclusion 
on fxSMR. We measured aliquots from the same sample population 
that were resuspended in different osmolarities. Isotonic buffer is the 
cell culture media containing 5 mg ml−1 FITC–dextran, which has an 
estimated osmolarity of 300 mOsm. The 600 mOsm hyperosmolarity 
buffer was made by first diluting NaCl stock solution (Sigma S5150) with 
water to a final concentration of 225 mM NaCl in water, and then mixing 
the NaCl buffer with PBS that contains 10 mg ml−1 FITC–dextran, with a 
1:1 mixing ratio. After fxSMR volume measurements on the two buffer 
conditions, the median cell volume was calculated from each single-cell 
dataset. A linear regression fitting was conducted using median cell 
volumes as y values and the corresponding [1/osmolarity] as x values. 
The y intercept of the fitted slope was determined as the osmotically 
inactive volume, and osmotically active water content was determined 
by subtracting the inactive volume from the median cell volume of the 
isotonic measurement (Supplementary Fig. 4b).

Cell culture
L1210, THP-1, BaF-3, FL5.12, s-HeLa and HL60 cells were cultured in RPMI 
(Invitrogen). Patu-8902 cells were cultured in Dulbecco’s modified 
Eagle medium (DMEM) (Gibco). For all cells, the media was supple-
mented with 10% FBS (Sigma-Aldrich), 1 mM Na pyruvate (Invitrogen), 
10 mM HEPES (Invitrogen) and antibiotics (Invitrogen). The FL5.12 cell 
culture media was also supplemented with 100 ng ml−1 IL-3 (R&D Sys-
tems). L1210 cells were obtained from American Type Culture Collec-
tion, THP-1 cells were graciously donated by the Chen lab at MIT, BaF-3 
cells were obtained from RIKEN BioResource Center, FL5.12 cells were 
previously donated by the Vander Heiden lab at MIT. s-HeLa cells were 
previously donated by the Elias lab at Brigham and Women’s Hospital. 
HL60 cells were previously donated by Thiam lab at Stanford. Patu-
8902 cells were previously donated by the Hahn lab at the Broad Insti-
tute. All experiments with cell lines were carried out with exponentially 
growing cells at a confluency of 300,000–600,000 cells ml−1. All cell 
lines were tested for mycoplasma and no mycoplasma was detected. 
For FL5.12 IL-3 depletion, cells were first grown to confluency at 1 million 
cells ml−1, and subsequently washed three times in RPMI media without 
IL-3 and resuspended in RPMI media without IL-3 at a concentration of 
500,000 cells ml−1.

For CD8 T cell activation, apheresis leukoreduction collars 
from anonymous healthy platelet donors were obtained from the 
Brigham and Women’s Hospital Specimen Bank under an institutional 
review board-exempt protocol. Human peripheral blood mononu-
clear cells (PBMCs) were isolated via density gradient centrifuga-
tion (Lymphoprep, StemCell Technologies Inc., 07801). PBMCs were 
resuspended in cryopreservation media (90% FBS + 10% DMSO) and 
frozen down. For T cell activation, 24-well plates were precoated 
with anti-human CD3 antibodies (0.5 µg ml−1, BioXCell, BE0001-2) 
and anti-human CD28 antibodies (5 µg m−1, BioXCell, BE0248) for 
24 h at 4 °C. PBMC samples were thawed on the day of activation and 
T cells were purified via the EasySep Human CD8+ T Cell Enrichment 
kit (StemCell Technologies Inc., 19053). Isolated T cells were seeded 
in the CD3/CD28 precoated well plates at a concentration of 500,000 
cells ml−1 with 1 ml well−1 in ImmunoCult-XF T Cell Expansion Medium 
(StemCell Technologies Inc., 10981) supplemented with 10 ng ml−1 

recombinant IL-2 (StemCell Technologies Inc., 78036.1). T cells were 
removed from CD3/CD28 plate coating after 48 h of incubation and 
moved to uncoated wells. For the remainder of the culture, cells were 
passaged when the concentration reached over 1 million cells ml−1 to 
a new concentration of 500,000 cells ml−1.

For B cell activation, apheresis leukoreduction collars from three 
anonymous healthy platelet donors were obtained from the Brigham 
and Women’s Hospital Specimen Bank under an institutional review 
board-exempt protocol. PBMCs were isolated with Ficoll-Paque Plus 
(Thermo Fisher Scientific, 45001749) using the manufacturer’s recom-
mended protocol. The PBMC layer was isolated, subjected to ACK lysis 
(Life Technologies, A1049201) and washed with PBS. Naive B cells were 
isolated using EasySep Human Naïve B Cell Isolation kit (StemCell, 
17254) according to the manufacturer’s protocol. The naive B cells were 
seeded at 100,000–250,000 cells ml−1 in a 6-well plate and cultivated in 
the ImmunoCult Human B Cell Expansion kit (StemCell, 100-0645). The 
plating density was adjusted to 100,000 cells ml−1 every 2–4 days and 
the viability was assessed by Trypan blue. Unstimulated naive B cells 
were cultivated in RPMI supplemented with 10% FBS and antibiotics. 
The immunophenotype was confirmed by flow cytometry. The cells 
were stained in Brilliant Stain Buffer (BD Biosciences, 566349) with the 
following dyes and antibodies diluted at their predetermined concen-
trations: Zombie Aqua (BioLegend, 423102; 1:500 dilution), anti-human 
CD19 (BD Biosciences, 564456; prediluted by supplier), anti-human 
IgD (BD Biosciences, 561314; prediluted by supplier), anti-human CD27  
(BD Biosciences, 562513; prediluted by supplier), anti-human CD86 (BD 
Biosciences, 555665; prediluted by supplier), anti-human HLA-DR (BD 
Biosciences, 560743; prediluted by supplier), anti-human CD24 (BD 
Biosciences, 563401; prediluted by supplier) and anti-human CD38 
(BD Biosciences, 555462; prediluted by supplier). The cells were then 
washed with PBS supplemented with 2% FBS and 0.2% EDTA. Stained 
cells were analysed on a BD LSR Fortessa flow cytometer (Dana-Farber 
Cancer Institute (DFCI) Flow Cytometry core) and data were collected 
using FACSDiva and analysed using FlowJo v10 software.

PDX model development and ex vivo drug testing
The NIBRX-1362 pancreatic ductal adenocarcinoma PDX model was 
previously established and characterized47 and was obtained from 
the DFCI Center for Patient Derived Models, which is a distributor of 
the model51. Mice are housed in the state-of-the-art animal care facility 
at the DFCI with housing environment regulated for a 12 h simulated 
light/dark cycle, temperatures of 65–75 °F (~18–23 °C) with 40–60% 
humidity. Briefly, the cryopreserved PDX seeds were thawed and rinsed 
with DMEM before being implanted in athymic nude mice (Taconic, 
NCRNU-F) in the presence of matrigel (Corning). When the tumour 
reached a palpable size, tumour volume was measured and monitored 
using a digital caliper. Tumours were collected when approaching 
2,000 mm3 and were serially passaged from collected tumour seeds. 
The identity of the NIBRX-1362 PDX model used in this study was con-
firmed via STR fingerprinting and key gene mutations (KRAS G12D) 
were verified via exome sequencing. The animal protocol was approved 
by the DFCI Institutional Care and Use Committee.

To perform the acute drug sensitivity assays, freshly collected PDX 
tumours were aseptically explanted from the flank and processed to 
remove necrotic tumour regions and mechanically dissociated into sin-
gle cells using the Miltenyi Tumor Dissociation kit (Miltenyi, 130-095-
929) and the GentleMax dissociator according to the manufacturer’s 
instructions. The dissociated cells were filtered using a 0.2 µm strainer 
and subjected to mouse cell removal using a mouse cell depletion kit 
(Miltenyi, 130-104-694). The mouse-depleted tumour cells of NIBRX-
1362 were plated at 1,250 cells per well with 40 µl of DMEM + 2% FBS 
(Gibco, 11965092 and Sigma, F2442) in 384-well opaque plates (Corn-
ing, 3570) for acute drug sensitivity measurement via the CellTiter-Glo 
(CTG) assay and plated at 75k cells per well with 3 ml of DMEM + 2% FBS 
in 6-well ultralow attachment plates (Corning, 3471) for fxSMR assays.
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For acute drug sensitivity measurement using the CTG assay, 
the freshly plated PDX cells were incubated overnight before treat-
ment with a concentration range of gemcitabine (10 µM to 3.25 nM, 
SelleckChem S1714) or trametinib (1 µM to 0.325 nM, SelleckChem 
S2673) using an automated drug dispenser (Tecan D300e Digital Dis-
penser). After 6 days of drug treatment, cells were examined using 
CellTiter-Glo 2.0 cell viability assay (Promega G9241) according to the 
manufacturer’s instruction. Data were analysed using GraphPad Prism.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets generated in this study (single-cell buoyant mass, volume 
and density data, lymphocyte cell count data, as well as other meas-
ured variables) are available via Zenodo at https://doi.org/10.5281/
zenodo.15098741 (ref. 52). Source data are provided with this paper.

Code availability
All codes used in this study are available via GitHub at https://github.
com/rwu0614/fluorescence_excluision_fxSMR (ref. 53).
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