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Cell density, the ratio of cell mass to volume, is anindicator of molecular
crowding and afundamental determinant of cell state and function. However,
existing density measurements lack the precision or throughput to quantify
subtle differencesin cell states, particularly in primary samples. Here we
present an approach for measuring the density of 30,000 single cells per
hour by integrating fluorescence exclusion microscopy with asuspended
microchannel resonator. This approach achieves a precision of 0.03%
(0.0003 g mI™?) for cells larger than 12 umin diameter. In human lymphocytes,
we discover that cell density and its variation decrease as cells transition from
quiescence to a proliferative state, suggesting that the level of molecular
crowding decreases and becomes more regulated upon entry into the cell
cycle. Using a pancreatic cancer patient-derived xenograft model, we find that
the ex vivo density response of primary tumour cells to drug treatment can
predict the in vivo tumour growth response. Our method reveals unexpected
behaviour in molecular crowding during cell state transitions and suggests
density as abiomarker for functional precision medicine.

Cell density is determined by the cell’s dry mass composition and the
fraction of cell volume occupied by water, which reflects its molec-
ular crowding level. Although cell mass and volume can vary up to
50% in proliferating cells, cell density is tightly regulated to maintain
an optimal level of molecular crowding' . Environmental cues such
as nutrient depletion and changes in osmolarity are known to alter
molecular crowding, whichimpacts cellular biochemistry by altering
the diffusion rate and protein conformation**. The coupling between
crowding level and cell physiology makes cell density a key proxy for
characterizing fundamental cellular processes such as proliferation,
apoptosis, metabolic shifts and differentiation’?, indicating its poten-
tial as a biomarker for cellular fitness and drug response. Studies on

single-cell organisms such as bacteria and yeast have reported that
molecular crowding levels substantially change during cell state transi-
tions between proliferation and dormancy, and density is thought to
acutely reflect these transitions®®, Whether such connections between
density and proliferation exist in primary mammalian cells remains
unclear, in part due to limitations in existing methods.

Amajor challenge for measuring cell density is achieving high sam-
pling throughput together with high precision. Traditional gradient
centrifugation methods assess cell densities onapopulational level, but
areslowandrequire alarge sample size, which limits their use for study-
ing transient biological processes. Single-cell measurements reveal the
heterogeneity of cell density withinapopulation, providinginsightinto
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Fig.1| FXSMR enables high-throughput and high-precision single-cell density
measurements. a, A schematic showing the system design. A fluorescence
detection set up is positioned above the SMR microfluidic chip; the green shaded
areaindicates the fluorescence detection region and black arrows indicate the
flow direction of single cells (blue). b, Raw signals from SMR (orange) and the
photomultiplier tube (green) when measuring L1210 cells. Each peak indicates the
passing of asingle cell. ¢, Azoomed-inimage of b, highlighting the shape of SMR
and PMT signals for asingle cell, and the calculation of cell volume from the drop

in fluorescence signal (Emg;,p) from the fluorescence baseline (Empgseiine)- d, A
scatter plot of cell mass versus volume for a population of L1210 cells as measured
in~20 min. nrefers to the number of individual cells. e, Representative plots of
volume, mass and density of a single hydrogel microparticle that was measured
repeatedly using fluidic trapping; The measurement precision (CV) is reported
foreach metric (mean +s.d. for 5independently trapped particles). nrefers to the
number of repeat measurements for the individual particle shown in the plots.
Figure created with BioRender.com.

density regulation. Magneticlevitation methods determine the density
of single cellsby balancing the cell’sgravity and the buoyancy exerted by a
paramagnetic medium®°. Methods detecting dry-mass density (dry mass
over total volume), such as quantitative-phase microscopy or Raman
imaging coupled with cell volume measurements, provide alternative
density measurements" . Although these methods provide subcellular
resolution and single-cell tracking, their applications are limited by low
throughput, where a typical experiment includes tens to hundreds of
single cells when measuring cell density. The suspended microchannel
resonator (SMR) is a microfluidic mass sensor that has been used to
measure single-cell density by measuring the buoyant mass of a cell in
two types of fluids with different densities”2°. However, the throughput
of this approach is also limited to a few hundred cells per experiment
becauseitrequires cellsto be sequentially measured intwo types of fluids.

SMR and quantitative-phase microscopy devices have already
achieved a throughput of tens-to-hundreds of thousands of cells
per experiment® >, With a streamlined volume-sensing unit, the
same throughput could be achieved for measuring cell density.
Fluorescence exclusion microscopy (fxm) provides a volume meas-
urement compatible with existing SMR devices. Fxm measures the
exclusion of fluorescence intensity induced by single cells that are
suspended inahighly fluorescent media with cell-impermeable dye
molecules. This method has been adapted to measure single-cell
volumes of various model systems including bacteria, yeast and
mammalian cells**?,

Here, we present a fluorescence exclusion-coupled SMR (fxSMR)
platform that simultaneously measures single-cell buoyant mass and
volume, which allows usto profile cell density withathroughput of over
30,000 cells per hour and a precision of 0.03% (0.0003 g mI™) for cells
larger than12 pumin diameter. We show three advances that are enabled
by our high throughput and precision. We identify unexpected density
heterogeneity, reveal molecular crowding associated changes during cell
state transition and validate density as anew biomarker of drug response.

Results
Platform design and characterization
To couple single-cell mass and volume measurements, our system is
composed of an SMR cantilever with microfluidicinlets for receiving a
stream of single cells and afluorescence microscopy set up positioned
attheentry of theresonator chamber (Fig. 1a). The fluorescence level
emitted from the detection region is continuously monitored by a
photomultiplier tube (PMT). To achieve the fluorescence exclusion
volume measurements, cells are suspendedin afluorescent mediathat
contains cell-impermeable dye-conjugated dextran. When thereis no
cellpresentatthe detectionregion, the PMT detects a high fluorescence
baseline from the media. As the cell passes through, the fluorescence
level decreases proportionally to the volume of the cell. The raw volume
signal is computed by taking the ratio of the change in fluorescence
level to the baseline height (Fig. 1b,c).

Cells flow through the SMR after volume measurement and the
buoyant mass signal canbe resolved from the change in SMR resonance
frequency”*. Cell density, or buoyant density, is then computed by

buoyant mass
volume

Peell = + Priuid- o)

We profiled a mouse lymphocytic leukaemia cell line, L1210, and
simultaneously obtained single-cell buoyant mass and volume read-
outs withathroughput of >30,000 cells per hour (Fig.1b,d).

We then characterized the accuracy of the volume and buoyant
mass measurements. Using five cell lines with median cell diameters
ranging from 12.6 to 21.0 pm, we found a linear correlation (Pearson
correlation coefficient R>= 0.9986) between cell volume measured
by Fxm and ground-truth volumes determined by a Coulter counter
(Supplementary Fig.1a,b). Similarly, using five populations of mono-
dispersed polystyrene beads ranging from 5 to 9 pm in diameter, we
found alinear correlation (Pearson correlation coefficient R>= 0.9998)
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Fig.2|Single-cell densities have a tight and non-Gaussian distribution.

a, The CV of density, buoyant mass and volume for five cell lines. Each marker
represents anindependent replicate; the short horizontal bars denote mean

of density, buoyant mass and volume in the corresponding colour; the dashed
red line denotes the system precision of density measurements. b, The density
distribution of L1210 cells with lines indicating normal (dotted red), log-
normal (orange) and stable (blue) distribution fitting. n refers to the number of

Buoyant mass (pg)

Buoyant mass (pg) Buoyant mass (pg)

individual cells. ¢, The kurtosis factor of the five cell lines. Each marker represents
anindependentreplicate. d, Representative scatter plot of mass versus density
for the five cell lines. The red lines and shaded red areas indicate median + s.d. of
celldensity ina moving filter along the buoyant mass axis. The grey points depict
single cells and n values refer to the number of individual cells. Fora, cand d,
n=3biological replicates for L1210, THP-1, FL5.12 and s-Hela and n = 2 biological
replicates for BAF-3.

between the SMR frequency shifts and the expected buoyant mass
calculated from bead sizes (Supplementary Fig. 1c,d).

To characterize measurement precision, we repeatedly measured
the buoyant mass, volume and density of single hydrogel particles in
the range of12.5-14.4 umin diameter and naive B cells in the range of
6.7-7.0 pmin diameter (Supplementary Fig. 1e-g). The average coef-
ficients of variation (CVs) from five independently trapped hydrogel
particleswere1.3% (volume), 1.1% (buoyant mass) and 0.03% (density)
(Fig.1leand Supplementary Fig. le-g). We found that density measure-
ment CVincreased to 0.30% for naive B cells due to the size-dependent
precision of our volume measurement (Supplementary Fig. 1f,g and
Supplementary Note 1). These results demonstrate that the fxSMR
platform achieves a 10-100-fold increase in throughput over previ-
ous approaches’"”* while maintaining high accuracy and precision.

Density variation in proliferating mammalian cells

Next, we sought to examine the heterogeneity of single-cell densi-
ties withina population, as enabled by the high-throughput nature of
our density measurement. Most biological features with homeostatic
regulatory mechanisms tend to exhibit a Gaussian distribution”. An
exception from this rule is the distribution of cell size, which follows
alog-normal distribution due to cell growth being exponential®**. A
deviation from the Gaussian distribution would suggest the existence
of amore complex control mechanism compared with a simple nega-
tive feedback mechanism.

We started by characterizing five suspension-grown mam-
malian cell lines, L1210, THP-1, BaF-3, FL5.12 and s-Hela. For sta-
tistical analysis, we gated on the viable cell population using a
viability marker (Supplementary Note 2). The CV of cell density
in all five models are below 0.6%, while the CV of mass and vol-
ume are considerably larger, with a range between 20% and 30%
(Fig. 2a). This is consistent with previous reports on density heter-
ogeneity in mammalian cells’®. Since the density CV is more than
tenfold higher than our measurement precision (Figs. le and 2a),
our approach is well suited to examine the shape of density distribu-
tions. Unexpectedly, cell densities in all five cell lines did not fit to a

normaldistribution (Fig. 2b and Supplementary Fig. 2a). We also found
that alog-normal distribution did not fit well with cell density when
compared with mass and volume (Supplementary Fig.2a-c). The den-
sity distributions were asymmetric and better fitted by a distribution
model (stable distribution) that accounts for the ‘heavy-tailed-ness’
of the distribution (Fig. 2b and Supplementary Fig. 2a,d). Consistent
with this, the kurtosis factors of the density distributions were all
higher than 3, whereas anormal distribution has kurtosis of 3 (Fig. 2c).
Moreover, since the hydrogel particle density measurements displayed
normal distributions (Supplementary Fig. 2e), the higher kurtosis in
cellsis biological rather than areflection of measurement bias.

We next considered the cell cycle as a potential source of density
variation. We used cell size as a proxy for cell cycle progressionbecause
they aretightly correlated®®*°*. From the five suspension cell line mod-
els, we did not observe any systematic correlation between cell mass
and density, althoughindividual cell lines show distinct features of cell
cycle-dependent density (Fig. 2d and Supplementary Fig. 3). These
results confirm that for proliferating suspension-grown mammalian
cells, cell cycle progression (within interphase) does not introduce
changes in cell density that would be shared between cell lines. Given
prior evidence that cellular dry mass density does not vary during the cell
cycle*, themolecular crowding level appears largely independent of the
cell cycle stage within interphase. Furthermore, in every cell line, both
light (<median buoyant mass) and heavy cells (>median buoyant mass)
display kurtosis higher than 3, suggesting the heavy-tailed distributions
arenotduetoa particular cell cycle stage (Supplementary Fig. 2f).

Density changes during cytotoxic T cell activation

Our results indicate that cell density does not systematically change
when cellsare cyclingininterphase, but previous studies have revealed
that cell cycle exit due to cell senescence canalter density®. Similarly, in
single-cell organisms, cells can enter aquiescence state where the cells
display higher molecular crowding (that s, higher density) and smaller
cellsize’”’. We therefore examined whether density homeostasis is spe-
cificto cycling cells (Fig. 3a). To study this, we focused on models where
we can compare cell density in quiescence and proliferative states.
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Fig.3 | Density profiling of humanlymphocyte activation shows crowding
transitions between quiescence and proliferative states. a, A qualitative
model of biophysical changes associated with the transition between quiescence
and proliferative states. b, Schematics showing the activation process of human
CD3*/CD8" T celland human naive B cell and subsequent profiling by fxSMR.

¢, Cell count versus time (days post activation) for T cells obtained from two
donors (red and pink). The dotted line denotes the expected seeding density.

d, Scatter plots of mass versus density showing the T cell dynamics post
activation for donor 1. The blue areas indicate the density range of quiescent T
cellsatday O, with upper and lower bounds indicating the 1st and 99th percentile
ofthe density distribution. CVs of density at day 0,1,2 and 5 are 1.008%, 0.453%,
0.392% and 0.627%, respectively. n refers to the number of individual cells.

Buoyant mass (pg)

e, Representative cell count versus time (days post activation) for naive B cells
obtained from two donors. The B cells were either activated (solid orange lines)
orkept asinactive naive B cells (dotted grey line). f, Representative scatter plots
of mass versus density showing B cells at day 0 and 3 post activation. The blue
areas indicate the density range of quiescent B cells similar to d. CVs of density at
day O and3arel.850% and 0.384%, respectively. n refers to the number
ofiindividual cells. g, The median cell density and the CV of density for quiescent
and proliferating lymphocytes. Two-tailed paired ¢-tests yielded

Pvalues of 0.0049 for median density 0.0269 for density CV, from eight
biological replicates, including T cells (red), B cells (orange) and murine pro-B
lymphocytic cell line FL5.12 (blue). Figure created with BioRender.com.

First, we studied human lymphocytes from peripheral blood
that circulate as quiescent cells and can readily become activated
and proliferating effector cells after encountering external stimuli.
We performed daily measurements of CD8" T cells from two human
donors after anti-CD3 and anti-CD28 activation (Fig. 3b,c). During
the first 2 days post activation, the density CV decreased from ~1%
to~0.4%, suggesting a stronger density regulationas T cells start to
proliferate (Chi-square variance tests reported P values <0.00001
for both donors) (Supplementary Fig. 4g). In the same time frame,
T cells increased their size substantially while decreasing average
density from ~1.08 to ~1.05 g mI™ (Fig. 3d,g and Supplementary
Fig.4a). We then sought to determine whether this decreasein aver-
age cell density reflects changes in molecular crowding. As a proxy
for molecular crowding, we measured the fraction of osmotically
active water content over total cell volume by applying the Boyle
Van’t Hoff relation, where the volume of a cell is inversely propor-
tional to the external osmolality** %, We measured the active water
content of T cells by profiling the volumes of each sample under two
different osmolarity conditions (Supplementary Fig. 4b). We found
thatT cellsincreased their water content from ~-63% to ~80% of total
cell volume within the first 2 days of activation (Supplementary

Fig. 4c,d), suggesting a lower crowding level before cells start to
divide. The relationship between cell density and intracellular
molecular concentrations is discussed in more detail in Supple-
mentary Note 3.

We confirmed our findings by studying different cellular models
of cell quiescence and proliferation. Similar trends in cell density and
size were observed in activated and proliferative human naive B cells
(Fig. 3b,e-g and Supplementary Fig. 4e-g). In addition, we studied
a pro-B lymphocytic murine cell line FL5.12, which is interleukin-3
(IL-3) dependent and exits the cell cycle following IL-3 depletion®. As
withthe humanlymphocytes, we observed that quiescent FL5.12 cells
have a higher density owingto increased crowding and higher density
CV when compared with their proliferative state (Fig. 3g and Supple-
mentary Fig. 5). We performed small particle trapping experiments to
validate that the observed differencesin density CV are predominantly
driven by biological variability rather than increased measurement
noise in small quiescent cells (Supplementary Note 1). Overall, our
results reveal that lymphocytes maintain lower cell density and tighter
density homeostasis when proliferating. This suggests that density
regulationis coupled to the molecular machinery responsible for cell
growth and/or proliferation.

Nature Biomedical Engineering


http://www.nature.com/natbiomedeng
http://www.biorender.com

Article

https://doi.org/10.1038/s41551-025-01408-6

a
NIBRX-1362 Starting treatment In vivo response
!
\ . >3 weeks _ _ _longterm
J Proliferation assay
(CellTiter-Glo)
Trametinib -Tweek = . ______ A Eu_te_
or s
Gemcitabine % Physical attributes:
(fxSMR)
<2 days Hyperacute
(2295, ¢ g% __________________
d 36 h post-treatment from fxSMR e f
n= n= n= [
110
. 1.08 | 423 2,505 1,712 :‘ N
[
1.08 o S
3 = ‘g 107 ' o
C —_ o>
2 E 106 2 =
g o 2 106 "5
o Z 2 =
= ‘@ 104 [} =
8 % [a) 8
S A 1.05 8
2 1.02 =
I? 1.04
‘ n=18,024‘ . O os os
1.00 » £cctc
0 100 200 S 85 5o
a 86 2p
Buoyant mass (pg) GO g
A=
O]
o
h P=139x107"° P=214x10"° 1
. 0.006 - p-0.02 P=0.82
1
IS L . o) [
5 0004 " E g g
~ > P —
o 9 L 9 a g
?5 0.002 . 35 =
[0 % s Q % o
23 0 [ g o
- ° [ S
fan > @2 =
i) <@ =
§ -0.002f E
T n=29 n=27 n=25 5 h-29 n=27n-25
a2 neginess MR nEs
O 2=2= O ¢=2=
%] g ccc %] _g ccc
2 §o%2 2 82%2
B A En S A En
e O e &
o F o
O] O

Fig. 4| Density demonstrates robustness as a hyperacute biomarker for
predicting long-termin vivo drug response. a, Schematics showing the
paradigm of functional biomarkers for predicting long-termin vivo treatment
response. b, Thein vivo treatment response measured by tumour volume

(one mouse per condition) data®. ¢, CellTiter-Glo dose response at day 6 after
treatment, with three biological replicates per drug concentration. The slopes
represent dose response fitting. d, Representative scatter plot of single-cell mass
versus density at 36 h post treatment. The red box shows the gating of viable cells.
nrefers tothe number of individual cells. e, Viable single-cell densities, with red
dots denoting the median densities. f, Calculation of density response, with the
dotted line indicating where the density response is 0 (median density equal to
the DMSO control). g, The 36 h density responses for gemcitabine and trametinib

b € Day 6 post-treatment from CellTiter-Glo
== Control 3
=== Gemcitabine S 1.00
600 - inil =
= Trametinib 8 \
o £ %o > PN P
2 E o 29 o7
S 400 < 8z
@ = o 90O
o g / \/ & 20 050
=] g 80
£ S S ET
O = / = N
o £ 200% 3 "3 025
= < E Trametinib
9 o
e o ‘ ‘ —= Gemcitabine
0 ~ 9 8 -7 -8 -5 -
O 5 10 15 20 25 10 -9 8 7 A6 5 4
Days post treatment log[concentration] (M)
9
70.004 0.004 - ——  Gemcitabine
1.057 - ° g Trametinib
e =
{0003 2 g 0003
=
1.056 | < 5
2 9
{0002 3 & 0.002F
1.055 S S
Y 3 & T T I
q0001 & ¢ 0001F —_— T
1.054 | 3 2 T/ 1 | l
(2]
= c Ol A
F@-———————— 0 = 8 |
1.053 - : .
o ¢z 2=
() =Cc cc -0.001 L L L L L L |
= So §o 10° 10? 10" 10° 10" 10° 10° 10*
o 8o Ire)
5o E
E— & .
g - Concentration (nM)
1k
Density: trametinib
0.8 - (AUC = 0.998)
E: Buoyant mass: trametinib
S o6 |~ 7 0 T (AUC = 0.823)
=
2 oal Density: gemcitabine
g (AUC = 0.678)
o2+~ 7| Buoyant mass: gemcitabine
(AUC = 0.480)
ol
. . . . . .
0O 02 04 06 08 10

False positive rate
(one specificity)

atmultiple concentrations. Dataindicate mean+s.e.m.;n=3,3,4,4and 6
biological replicates for ascending concentrations of gemcitabine,andn=3,3,3,
4 and 5Sbiological replicates for ascending concentrations of trametinib. h, The
average density (left) and buoyant mass (right) responses following different
treatments. The Pvalues were generated from two-sided unpaired parametric
t-tests. On each box and whiskers plot, the central mark denotes the median, the
edges represent the 25th/75th percentiles and the whiskers extend to 1.5 the
interquartile range away from the box edges. n denotes the number of biological
replicates. i, The ROC analysis of density (solid lines) and buoyant mass (dotted
lines) responses using data from h. The area under the curve (AUC) scores
denote the predictive powers of density and mass response. Figure created with
BioRender.com.

Density as abiomarker for drugresponse

Since changes in cell density can reveal state transitions related to cell
proliferation, we sought to determine whether it could be used as a
biomarker for assessing the ex vivo treatment response of cancer cells.
A major goal for precision cancer medicine is to match each patient
with the most effective drug treatment. Functional precision medicine
(FPM) approaches, which involve drug testing performed directly on
patient tumour cells, have emerged in recent years to help select the
optimal drug treatment at the time of diagnosis or relapse*. In these
assays, live cellsisolated from patient tumours are treated with a panel

of candidate drugs ex vivo, and drug responses are assessed for their
ability to predict patient outcomes”. Proliferation-based assays for drug
response work wellin cell line models that have adapted to thrive in ex
vivo conditions. However, primary cancer cells often do not proliferate
orrequire specific culture conditions to stimulate proliferation ex vivo,
thereby increasing risk of phenotypic drift*>. Consequently, there is a
need for predictive FPM biomarkers that minimize phenotypic drift by
assessing ex vivo treatmentresponse at short timescales where cellsare
not proliferating. A number of studies have shown that cell mass can
functionasapredictive biomarker with1-2 day turnaround times**>**,
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We hypothesized that cell density response could also function as a
hyperacute predictive biomarker even in the absence of proliferation,
given that increases in crowding level (that is, cytoplasmic condensa-
tion) have long been regarded as an early indicator of apoptosis'®**,

To validate the density biomarker, we used a patient-derived
xenograft (PDX) model as a source of cells to benchmark the density
response against previously established FPM assays of proliferation
and cell mass measurements (Fig. 4a). The pancreatic ductal adeno-
carcinoma model, NIBRX-1362, harbours the KRAS G12D mutation
and has known in vivo drug response profiles from a previous study*’
(Fig. 4b). Repeat testing confirmed the model exhibited in vivo sensi-
tivity to trametinib, a MEK pathway inhibitor, and only mild response
to gemcitabine, a chemotherapy. We next isolated dissociated single
cells derived from the untreated PDX tumours and assessed prolif-
erationresponse using CellTiter-Glo at 6 days after ex vivo drug treat-
ment. Using this approach, we noted a marked ex vivo tumour cell
response to trametinib and a less effective response to gemcitabine
(half-maximum inhibitory concentration of 0.172 nM and 8.561 nM,
respectively) (Fig. 4c) thereby validating that the ex vivo response
agreed with theinvivoresultsatan‘acute’ 6 day time frame.

To determine whether single-cell density can achieve the same
conclusionbut at ahyperacute timescale, we profiled single-cell den-
sity and mass using fxSMR at 24 and/or 36 h post drug treatment, using
similar conditions to the CellTiter-Glo assay. We first applied a gating
based on density and buoyant mass to select viable cells (Fig. 4d and
Supplementary Note 2), and then for every drug-treated sample, we
subtracted the median density of the sample from the median density
of the control (Fig. 4e,f) to obtain a density response for each treat-
ment. A dose-response analysis demonstrated that both trametinib
and gemcitabine resulted in density response when compared with
the dimethylsulfoxide (DMSO) treatment (n = 9 separate experiments
and PDX-bearing mice). The half-maximum effective concentration
for trametinib treatment was 0.017 nM, and could not be stably fitted
for gemcitabine treatment (Fig. 4g). At high concentrations (=10 nM),
trametinib treatments displayed a greater and more significant den-
sity response compared with gemcitabine (median density response
of 0.0027 g ml™ and 0.0009 g ml™, accordingly), which agreed with
thelong-termin vivo response and the CellTiter-Glo results (Fig. 4h).

Furthermore, whenbenchmarking the ability to distinguishbetween
treatmentresponses, we found thatbuoyant mass detected asignificant
response from trametinib treatment, but could not resolve asignificant
gemcitabine response (Fig. 4h). To further test whether the density
response is more likely to align with the long-term in vivo response, we
performed areceiver operating characteristic (ROC) analysis on the
robustness of a binary prediction of the PDX model’s in vivo treatment
sensitivity, generated from comparisons of ex vivo drug response against
the DMSO control (Fig. 4i). The ROC analysis showed that, for both treat-
ments, density has astronger predictive power than mass (for trametinib,
density AUC of 0.998 and mass AUC of 0.823; for gemcitabine, density
AUC of 0.678 and mass AUC of 0.480). Since fxSMR readouts were col-
lected from a cohort of nine replicates of the PDX model, the strong
AUC scorefor predicting trametinib response also suggests that ex vivo
cell density response is highly robust in resolving the long-termin vivo
response of an effective treatment observed in this PDX model.

Discussion

We have shown that fxXSMR can precisely measure single-cell density
with 10-100x% higher throughput than existing methods. With our
approach, wediscovered that cell density and molecular crowding differ
between proliferating and quiescent lymphocytes. This discovery bears
resemblance to similar observations in unicellular organisms, where
the increased molecular crowding in the quiescence state has been
associated with slower signalling and lowered metabolic activity*>*%, It
is possible that the high cell density we observed in quiescent mamma-
lian cells has asimilar role where non-proliferating and largely inactive

cells conserve energy. More broadly, our results suggest a conserved
mechanism that couples the regulation of cell density and molecular
crowding to the regulation of cell state between quiescence and pro-
liferation. Itis also worth noting that a seemingly small change in cell
density (<5%) can correspond to relatively large changes in molecular
concentrations inside the cell, with potential implications for phase
transitions and enzymatic reaction rates (Supplementary Note 3).

Our results also reveal insights into the regulation of cell density
homeostasis. We discovered that proliferating mammalian cells display
less cell-to-cell density variability than quiescent cells, indicating that
the strength of density homeostasis is dependent on the cell cycle
machineryresponsible for cycling cell state. However, cellsin early and
lateinterphase display similar density homeostasis, ruling out density
regulationbyaGl, S or G2 cell cycle stage specific mechanism. Further-
more, our work revealed that cell density distributions are non-Gaussian
in proliferating cells, thus narrowing down the space of theoretical
models that could explain how density homeostasis is maintained.

In addition to its potential for exploration of the biology of
density homeostasis, our approach may provide a much-needed
method for functional precision medicine in patients. The ability of
high-throughput single-cell density measurements to generate drug
response datainthe hyperacute non-proliferative windowis a unique
capability when compared with other functional precision medicine
approaches. For example, organoid testing typically requires longer
time periods (for example, weeks) for ex vivo expansion to generate a
sufficient number of cells for assessments.

There are two important limitations of our drug response study.
First, since we have not measured density response across multiple
patientmodels, the broader predictive capability across heterogeneous
cancers will require future studies. Second, since we have only meas-
ured the density response from two drugs, the extent to which density
response will generalize across other drugs with awide range of mecha-
nisms remains unknown. However, previous studies with cell lines have
shown that drugs with various mechanisms of action can uniformly per-
turb cell density'®". With our high-throughput approach, we believe that
many drugs can now be more readily profiled on patient samples within
ahyperacute time window, thereby enabling clinical studies for assess-
ing the effectiveness of density response in guiding patient treatment.

Methods

System set up

The design of the SMR devices were reported in ref. 49. The fabrica-
tionwas carried out at CEA-LETIin Grenoble, France, with procedures
outlinedinrefs.17,26. An SMR device was actuated by a piezo-ceramic
plated underneath the chip, which allows the suspended cantilever
to vibrate at the resonant frequency of its second vibrational mode.
Vibrational frequencies were measured by piezo resistors at the base
ofthe cantilever. A closed-loop feedback system was applied to ensure
consistentactuation at the resonant frequency, with a predefined delay
time between the piezo resistor readout signal and the actuator driv-
ing signal. The driving signal was amplified to achieve high-oscillation
amplitude as well as low-frequency noise.

The optical set up was built with an epi-fluorescence microscope
(Nikon LV-UEPI2), using similar designs as previously described*.
To reduce the noise in fluorescence measurements resulting from
mechanical instabilities, two additional optical posts (Thorlabs) were
installed to better support the optical pedestal (Thorlabs) between
the microscope and the lower breadboard that holds the SMR device.
Fluorescence excitation was provided by a laser-LED multiband illu-
minator (Lumencor SPECTRA Light engine). A 50%/0.55 objective lens
(Nikon-CFI, LU Plan ELWD WD 10.1 mm) was used, and the emission
collection area was defined by two orthogonally placed adjustable
mechanicalsslits (Thorlabs VA100/M). The emission light was collected
using a complementary metal-oxide semiconductor camera (FLIR,
BFS-U3-13Y3M-C) and photomultiplier tubes (Hamamatsu, H10722-20).
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A10/90 beam splitter was positioned in front of the camera to direct
10% of all emission light to the camera. For each photomultiplier tube,
thelight path consisted of a dichroic mirror (Semrock), an emission fil-
ter (Semrock) and aconvex lens (Thorlabs LA1027). The emission light
was separately collected into five PMTs with the following emission
filter ranges: 438/24, 515/30, 595/31, 678/70 and 809/81 nm. Volume
measurements from fluorescein isothiocyanate (FITC)-dextran dye
molecules were conducted with ~500 mW excitation light (475/28 nm)
and the emission light was captured within the 515/30 nm band. The
exact optics configurations are shown in Supplementary Fig. 6a. For
communications with the PMTs, reference voltages were set by ana-
logue output modules (National Instruments NI-9263) and the out-
put signals were collected by voltage modules (National Instruments
NI-9215) were used.

System operation

SMR devices have four fluidicinlets that are connected to the sample,
buffer and waste reservoirs with 0.007 inchinner-diameter fluorinated
ethylene propylene tubing (IDEX Health & Science). Pressurized house
air was used to drive the fluidics. Flow directions were controlled by
electronic pressure regulators and solenoid valves, through a custom
software in LabView2020. The typical flow rate was around ~10 nl s,
as estimated by the time for an average particle to travel through the
SMR cantilever.

For a typical single-cell density measurement, cells were resus-
pended toafinal concentration of -1 million cells mI™in the fluorescent
buffer. The buffer was made by dissolving 2,000 kDa FITC-dextran
(Sigma, FD2000S) in PBS or cell culture media to a final concentra-
tion of 10 mg ml™. Each sample was typically measured for 15-20 min.
Before each experiment, using a camera, we first manually set the
location of the light excitation spot at the centre of the microfluidic
channel, adjacent to the entrance to the SMR cantilever. Then, we
adjusted the microscope aperture diaphragm to ensure that the exci-
tation spotis wider than the microfluidic channel. During the run, the
sample reservoir was stored on ice to minimize endo/exocytosis. After
each measurement, the SMR cantilever was flushed with 50% bleach
in water and subsequently with PBS to minimize any accumulation
of debris or air bubbles along the channel wall. To ensure consistent
volume measurement across different samples, we adjusted the posi-
tioning of rectangular slits at the start of each experiment to define
the emission collection area (Supplementary Fig. 6b,c). Given that
the channel height was fixed, the slits configuration determined the
total fluorescence excitation volume, which was used to calculate cell
volume. Slits configuration was usually set to 20 pm (width) by 40 pm
(length) for a typical sample. The width was further adjusted for sam-
pleswithvery smallaverage cell sizes (naive T cells), and large average
cell sizes (s-Hela). Data acquisition was enabled by custom measure-
ment software in LabView2020 for both SMR and optical readouts.
SMR data were acquired at a data rate of -20 kHz and light-intensity
readouts from PMTs were acquired at a rate of ~50 kHz. Subsequent
fXSMR data analysis is described in Supplementary Note 4

Calibration of volume and buoyant mass measurement

Calibration of the raw volume signal from fxSMR to the standard unit
(femtolitre) was done with the L1210 cell line. Before each experiment,
we first measured a cell line populationin PBS suspension usinga coul-
ter counter (Beckman Coulter Multisizer 4,100 pm aperture) to obtain
acell volume distribution with the standard unit. Then, we measured
the cells using fxSMR and acquired a distribution of their raw volume
signals. Fromthese two distributions, we first took the median of each
measurement and calculated their ratio as an estimated calibration
factor (volume in fl/volume in a.u.). Then we refined the calibration
accuracy by looping through a range of potential calibration factors
(£3 a.u. around the starting calibration factor derived by medians) to
minimize the difference between the two distributions (the summed

difference in probability density between each percentile in the dis-
tribution). This optimization step led to afinal calibration factor. SMR
frequency peaks were calibrated (hertz to picogram) with 8 pm poly-
styrene beads with aknown density of 1.05 g mI™ (Thermo Fisher, Duke
Standards). Calibration calculations for both cell volume and buoyant
mass were conducted using MATLAB.

Accuracy and precision characterization

We characterizedthe accuracy of fxSMR volume measurementby bench-
marking against coulter counter volume measurement using five dif-
ferent cell lines, with median cell size ranges from ~1,000 to ~5,000 fl.
The volume of each cell line sample was first determined by a Coulter
Counter (Beckman) and subsequently measured by fxSMR. From the
single-cell volume distributions measured by the two platforms, the
median value of each sample was computed and used to calculate cor-
relation score between fxSMR measurements and ground-truth cell
volumes (Supplementary Fig. 1a,b). We characterized the accuracy of
fXSMR buoyant mass measurement with NIST traceable polystyrene
beads (ThermoFisher) of five different sizesbetween 5 umand9 pmin
diameter (Supplementary Fig.1c,d). The precision of fxSMR was deter-
mined by repeatedly measuring the same hydrogel particle (deformable
poly-acrylamide-co-acrylicacid microparticle), donated by the Morgan
Huse lab at the Sloan Kettering Institute. Each particle was pushed
forwards and backwards through the cantilever at the rate of ~30 s per
measurement for a duration of ~20 min. The trapping mechanism was
achieved by oscillating the pressure setting between the left and right
side of the cantilever to generate forwards and backwards pressure
gradients. Real-time SMR frequency analysis was used torecognize the
passage of a particle and the pressure setting was then switched after
a predefined period of time (50-200 ms) after each passage. Fluidic
controls were carried out through a custom software in LabView2020.
The ground-truth particle size was determined from 60x brightfield
images taken using an imaging flow cytometer (Amnis ImageStream,
Cytek), with INSPIRE ImageStream System Software. Particle areas
were calculated using automated feature identification using the IDEAS
image analysis software. Particle volumes were subsequently calculated
using GraphPad Prism. The simulation on the effects of measurement
uncertainty on cell population density variability was writtenin MATLAB
R2021a. The algorithm first defined input parameters, including the
proposed mean cell density (1 =1.08), sample size (n = 5,000), the range
of population CVs (0.1%to1.2%) and the CVs of the measurement noise
(0.033% to 0.294%). The algorithm then proceeded with two nested
loops. The outer loop iterated through the predefined noise CV values,
while theinnerloop varied the population CV values. For each combina-
tion, the algorithm generated a cell density population using anormal
distribution with the specified mean and standard deviation based on
the current population CV. It then added Gaussian noise to each sample,
withthenoise standard deviation calculated as a product of the noise CV
and the sample value. The mean and standard deviation of the simulated
cell population were used to calculate the CV of the simulated density
distribution. This computed CV was used to compare different combina-
tions of population and measurement noise variability.

Statistics

Statistical analysis was conducted using MATLAB and GraphPad Prism.
Statistical significance between groups or different experimental
conditions was determined using an unpaired parametric ¢-test in
Fig.4 and a paired parametric¢-testin Fig. 3 and Supplementary Fig. 5.
A Chi-square variance test for Supplementary Fig. 4g was performed
with vartest() MATLAB function. Distribution fitting over single-cell
datain Fig. 2 was conducted with the fitdist() MATLAB function with
specification ondistribution type such as normal, log-normal or stable.
The kurtosis and skewness factor of single-cell distributions were calcu-
lated by kurtosis() and skewness() MATLAB functions. One-sample Kol-
mogorov-Smirnov tests in Supplementary Fig. 2a-c were conducted
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by first fitting the data with the intended distribution type using the
fitdist(), and then the kstest() MATLAB function was performed to
test the dataagainst the cumulative distribution function of the fitted
model. Bootstrap analysis for Fig. 2 and Supplementary Fig. 2a-c was
carried out with the bootstrp() MATLAB function with1,000 iterations.
ROC analysis in Fig. 4 was conducted with the perfcurve() MATLAB
function. Abinary sensitivity label was given as the outcome variable,
with trametinib-treated samples as sensitive and gemcitabine-treated
conditions as non-sensitive.

Water content measurement by osmotic shocks

Osmotically active water content was measured by volume exclusion
on fXSMR. We measured aliquots from the same sample population
that wereresuspended in different osmolarities. Isotonic bufferis the
cell culture media containing 5 mg ml™ FITC-dextran, which has an
estimated osmolarity of 300 mOsm. The 600 mOsm hyperosmolarity
buffer was made by first diluting NaCl stock solution (Sigma S5150) with
water to afinal concentration of 225 mM NaClin water, and then mixing
the NaClbuffer with PBS that contains 10 mg mI FITC-dextran, witha
1:Imixing ratio. After ’xXSMR volume measurements on the two buffer
conditions, the median cell volume was calculated from eachsingle-cell
dataset. A linear regression fitting was conducted using median cell
volumes as y values and the corresponding [1/osmolarity] as x values.
The yintercept of the fitted slope was determined as the osmotically
inactive volume, and osmotically active water content was determined
by subtracting theinactive volume from the median cell volume of the
isotonic measurement (Supplementary Fig. 4b).

Cell culture

L1210, THP-1, BaF-3, FL5.12,s-HeLaand HL60 cells were cultured in RPMI
(Invitrogen). Patu-8902 cells were cultured in Dulbecco’s modified
Eagle medium (DMEM) (Gibco). For all cells, the media was supple-
mented with10% FBS (Sigma-Aldrich),1 mM Na pyruvate (Invitrogen),
10 mM HEPES (Invitrogen) and antibiotics (Invitrogen). The FL5.12 cell
culture media was also supplemented with 100 ng mIIL-3 (R&D Sys-
tems). L1210 cells were obtained from American Type Culture Collec-
tion, THP-1cells were graciously donated by the Chenlab at MIT, BaF-3
cellswere obtained from RIKEN BioResource Center, FL5.12 cells were
previously donated by the Vander Heiden lab at MIT. s-HeLa cells were
previously donated by the Elias lab at Brigham and Women'’s Hospital.
HL60 cells were previously donated by Thiam lab at Stanford. Patu-
8902 cells were previously donated by the Hahn lab at the Broad Insti-
tute. All experiments with cell lines were carried out with exponentially
growing cells at a confluency of 300,000-600,000 cells mI™. All cell
lines were tested for mycoplasma and no mycoplasma was detected.
ForFL5.12IL-3 depletion, cells were first grown to confluency at 1 million
cells ml™, and subsequently washed three times in RPMI media without
IL-3and resuspended in RPMI mediawithout IL-3 at a concentration of
500,000 cells mI™.

For CD8 T cell activation, apheresis leukoreduction collars
from anonymous healthy platelet donors were obtained from the
Brigham and Women’s Hospital Specimen Bank under aninstitutional
review board-exempt protocol. Human peripheral blood mononu-
clear cells (PBMCs) were isolated via density gradient centrifuga-
tion (Lymphoprep, StemCell Technologies Inc., 07801). PBMCs were
resuspended in cryopreservation media (90% FBS +10% DMSO) and
frozen down. For T cell activation, 24-well plates were precoated
with anti-human CD3 antibodies (0.5 pg ml™, BioXCell, BEO0O1-2)
and anti-human CD28 antibodies (5 pg m™, BioXCell, BE0248) for
24 h at 4 °C. PBMC samples were thawed on the day of activation and
T cells were purified via the EasySep Human CD8" T Cell Enrichment
kit (StemCell Technologies Inc., 19053). Isolated T cells were seeded
inthe CD3/CD28 precoated well plates at aconcentration of 500,000
cells mI with1 ml well in ImmunoCult-XF T Cell Expansion Medium
(StemCell Technologies Inc., 10981) supplemented with 10 ng ml™

recombinant IL-2 (StemCell Technologies Inc., 78036.1). T cells were
removed from CD3/CD28 plate coating after 48 h of incubation and
moved to uncoated wells. For the remainder of the culture, cells were
passaged when the concentration reached over 1 million cells ml™ to
anew concentration of 500,000 cells ml™.

For B cell activation, apheresis leukoreduction collars from three
anonymous healthy platelet donors were obtained from the Brigham
and Women’s Hospital Specimen Bank under an institutional review
board-exempt protocol. PBMCs were isolated with Ficoll-Paque Plus
(Thermo Fisher Scientific, 45001749) using the manufacturer’s recom-
mended protocol. The PBMC layer wasisolated, subjected to ACK lysis
(Life Technologies, A1049201) and washed with PBS. Naive B cells were
isolated using EasySep Human Naive B Cell Isolation kit (StemCell,
17254) according to the manufacturer’s protocol. The naive B cells were
seededat100,000-250,000 cells mI™ina 6-well plate and cultivated in
the ImmunoCult Human B Cell Expansion kit (StemCell, 100-0645). The
plating density was adjusted to 100,000 cells mI™ every 2-4 days and
the viability was assessed by Trypan blue. Unstimulated naive B cells
were cultivated in RPMI supplemented with 10% FBS and antibiotics.
The immunophenotype was confirmed by flow cytometry. The cells
were stained in Brilliant Stain Buffer (BD Biosciences, 566349) with the
following dyes and antibodies diluted at their predetermined concen-
trations: Zombie Aqua (BioLegend, 423102;1:500 dilution), anti-human
CD19 (BD Biosciences, 564456; prediluted by supplier), anti-human
IgD (BD Biosciences, 561314; prediluted by supplier), anti-human CD27
(BD Biosciences, 562513; prediluted by supplier), anti-human CD86 (BD
Biosciences, 555665; prediluted by supplier), anti-human HLA-DR (BD
Biosciences, 560743; prediluted by supplier), anti-human CD24 (BD
Biosciences, 563401; prediluted by supplier) and anti-human CD38
(BD Biosciences, 555462; prediluted by supplier). The cells were then
washed with PBS supplemented with 2% FBS and 0.2% EDTA. Stained
cellswere analysed on a BD LSR Fortessa flow cytometer (Dana-Farber
Cancer Institute (DFCI) Flow Cytometry core) and data were collected
using FACSDiva and analysed using FlowJo v10 software.

PDX model development and ex vivo drug testing
The NIBRX-1362 pancreatic ductal adenocarcinoma PDX model was
previously established and characterized and was obtained from
the DFCI Center for Patient Derived Models, which is a distributor of
the model’. Mice are housed in the state-of-the-art animal care facility
at the DFCI with housing environment regulated for a 12 h simulated
light/dark cycle, temperatures of 65-75 °F (-18-23 °C) with 40-60%
humidity. Briefly, the cryopreserved PDX seeds were thawed and rinsed
with DMEM before being implanted in athymic nude mice (Taconic,
NCRNU-F) in the presence of matrigel (Corning). When the tumour
reached a palpable size, tumour volume was measured and monitored
using a digital caliper. Tumours were collected when approaching
2,000 mm?and were serially passaged from collected tumour seeds.
The identity of the NIBRX-1362 PDX model used in this study was con-
firmed via STR fingerprinting and key gene mutations (KRAS G12D)
were verified viaexome sequencing. The animal protocol was approved
by the DFClInstitutional Care and Use Committee.
Toperformtheacute drugsensitivity assays, freshly collected PDX
tumours were aseptically explanted from the flank and processed to
remove necrotic tumour regions and mechanically dissociated into sin-
gle cells using the Miltenyi Tumor Dissociation kit (Miltenyi, 130-095-
929) and the GentleMax dissociator according to the manufacturer’s
instructions. The dissociated cells were filtered usinga 0.2 pm strainer
and subjected to mouse cell removal using a mouse cell depletion kit
(Miltenyi, 130-104-694). The mouse-depleted tumour cells of NIBRX-
1362 were plated at 1,250 cells per well with 40 pl of DMEM + 2% FBS
(Gibco, 11965092 and Sigma, F2442) in 384-well opaque plates (Corn-
ing, 3570) for acute drug sensitivity measurement via the CellTiter-Glo
(CTG) assay and plated at 75k cells per well with 3 ml of DMEM + 2% FBS
in 6-wellultralow attachment plates (Corning, 3471) for fxXSMR assays.
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For acute drug sensitivity measurement using the CTG assay,
the freshly plated PDX cells were incubated overnight before treat-
ment with a concentration range of gemcitabine (10 uM to 3.25nM,
SelleckChem S1714) or trametinib (1 uM to 0.325 nM, SelleckChem
$2673) using an automated drug dispenser (Tecan D300e Digital Dis-
penser). After 6 days of drug treatment, cells were examined using
CellTiter-Glo 2.0 cell viability assay (Promega G9241) according to the
manufacturer’sinstruction. Data were analysed using GraphPad Prism.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldatasets generated in this study (single-cell buoyant mass, volume
and density data, lymphocyte cell count data, as well as other meas-
ured variables) are available via Zenodo at https://doi.org/10.5281/
zenodo.15098741 (ref. 52). Source data are provided with this paper.

Code availability
All codes used in this study are available via GitHub at https://github.
com/rwu0614/fluorescence_excluision fxSMR (ref. 53).
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Software and code

Policy information about availability of computer code

Data collection  SMR and PMT data were collected using National Instrument LabVIEW 2020 SP1 (32bit). Flow cytometer data was collected using BD
FACSDiva software (v7). Cell volume and cell count data were collected using Beckman Coulter Multisizer 4 software (v4.01). Single hydrogel
particle images were collected using INSPIRE ImageStream System Software (version not published by supplier) and analyzed using IDEAS
software (v6).

Data analysis MATLAB R2021a was used for SMR and PMT data analysis, plotting, statistical tests, and simulation. FlowJo v10 was used for flow cytometer
data analysis. GraphPad Prism v9.5.0 was used for plotting data and statistical tests.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data generated in this study ( single-cell buoyant mass, volume and density data, lymphocyte cell count data, as well as other measured variables) are published
and available at https://doi.org/10.5281/zenodo.15098741

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and gender information was not collected as the lymphocyte samples were from anonymous healthy platelet donors.

Reporting on race, ethnicity, or | Information on race, ethnicity, or other socially relevant groupings was not collected as the lymphocyte samples were from
other socially relevant anonymous healthy platelet donors.

groupings

Population characteristics See above

Recruitment Apheresis leukoreduction collars from anonymous healthy platelet donors were obtained from the Brigham and Women's
Hospital Specimen Bank

Ethics oversight Sample collection was performed under an Institutional Review Board—exempt protocol

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size No statistical tests were used to determine the sample size. All experiments with hydrogel beads, cell lines and PDX samples relied on three or
more independent samples, which was considered sufficient to determine any major effects. For lymphocyte activation experiment, two T cell
donors and three B cell donors were selected as they all represent primary human lymphocytes. These sample sizes were selected based on
standard practices in the field and practical considerations including sample availability and experimental feasibility.

Data exclusions  Some fxXSMR data was excluded with a pre-established exclusion criteria to ensure confidence in signal quality. For full details of data
exclusion, please see Supplementary Note 4.

Replication All cell line and PDX data displayed represents at lease three independent samples. For determining fxSMR precision, each particles were
repeatedly measured at least 40 times.

Randomization  For single-cell fxSMR experiments, the cells that were measured were randomly selected by loading a population of cells into the fxSMR
device. For isolated primary cells from human donors and PDX models, cells were randomly selected to receive activation or drug treatments.

Blinding No blinding was carried out, since experiments and data analysis were carried out by the same group of individuals.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |:| |Z| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Plants

Antibodies

Antibodies used Anti-human CD19-BB515 (Clone HIB19, BD Biosciences, #564456, lot 0016067)
Anti-human IgD-Pecy7 (Clone IA6-2, BD Biosciences, #561314, lot 1172562)
Anti-human CD27-BV421 (Clone M-T271 BD Biosciences, #562513 , lot 1067357)
Anti-human CD86-PE (Clone IT2.2, BD Biosciences, #555665, lot 1104548)
Anti-human HLA-DR-AF700 (Clone G46-6, BD Biosciences, #560743, lot 1313902)
Anti-human CD24-BV711 (Clone MLS5, BD Biosciences, #563401, lot 1214405)
Anti- human CD38-APC (Clone HIT2, BD Biosciences, #555462, lot 1270277)
Anti-human CD3 antibodies (Clone OKT-3, BioXCell, #8E0001-2)
anti-human CD28 antibodies (Clone 9.3, BioXCell, #8E0248)
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Validation Antibodies were validated by manufacturer BD Biosciences. BD Biosciences' statement on antibody specificity validation: "The
specificity is confirmed using multiple methodologies that may include a combination of flow cytometry, immunofluorescence,
immunohistochemistry or western blot to test staining on a combination of primary cells, cell lines or transfectant models. All flow
cytometry reagents are titrated on the relevant positive or negative cells. To save time and cell samples for researchers, test size
reagents are bottled at an optimal concentration with the best signal-to-noise ratio on relevant models during the product
development. To ensure consistent performance from lot-to-lot, each reagent is bottled to match the previous lot MFI.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) L1210 cells were obtained from ATCC (Cat# CCL-219), THP-1 cells were graciously donated by the Chen lab at MIT (original
source unknown), BaF-3 cells were obtained from RIKEN BioResource Center (Cat#RCB4476), FL5.12 cells were previously
donated by the Vander Heiden lab at MIT (original source unknown). s-Hela cells were previously donated by the Elias lab at
Brigham and Women’s Hospital (original source unknown). HL60 cells were previously donated by Thiam lab at Stanford
(original source unknown). Patu-8902 cells were previously donated by the Hahn lab at the Broad Institute (original source
unknown).

Authentication L1210 and BaF3 cell lines were authenticated by visual inspection of morphology. S-Hela and Patu-8902 cells were
authenticated by visual inspection. HLE60 cells were authenticated functionally by differentiating with DMSO and successfully
inducing netosis. FL5.12 cells were authenticated functionally by culturing with and without IL-3 and confirming IL-3
dependent cell growth. No authentication tests were performed on other cells lines used in this study, including THP-1.

Mycoplasma contamination L1210 and BAF3 cell lines were tested for mycoplasma regularly. Other cell lines not tested.

Commonly misidentified lines  No commonly misidentified cell lines were used.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Athymic nude mice 6-12 wks old female. Mice are housed in the state of the art animal care facility at the Dana-Farber Cancer
Institute with housing environment regulated for a 12 hour simulated light/dark cycle, Temperatures of 65-75°F (~18-23°C) with
40-60% humidity.

Wild animals The study did not involve using wild animals.
Reporting on sex Female mice were selected.
Field-collected samples  The study did not involve using field-collected samples

Ethics oversight Dana-Farber Cancer Institute Institutional Care and Use Committee (DFCI-IACUC)




Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Seed stocks This study did not involve plants.

Novel plant genotypes  See above

Authentication See above
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Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

Apheresis leukoreduction collars from three anonymous healthy platelet donors were obtained from the Brigham and
Women's Hospital Specimen Bank under an Institutional Review Board—exempt protocol. Human peripheral blood
mononuclear cells (PBMCs) were isolated with Ficoll-Paque Plus (Thermo Fisher Scientific, # 45001749) using the
manufacturer's recommended protocol. The PBMC layer was isolated, subjected to ACK lysis (Life Technologies, # A1049201),
and washed with PBS. Naive B cells were isolated using EasySep™ Human Naive B Cell Isolation Kit (Stem Cell, #17254)
according to the Manufacturer’s protocol. The Naive B cells were seeded at 100,000-250,000 cells/mL in a 6-well plate and
cultivated in the ImmunoCult™ Human B Cell Expansion Kit (Stem Cell, #100-0645). Unstimulated and stimulated naive B cells
were stained in Brilliant Stain Buffer for 20min at room temperature, washed with PBS supplemented with 2% FBS and 0.2%
EDTA and analyze for flow cytometry.

BD LSR Fortessa flow cytometer (BD Biosciences)
Data were acquired using BD FACSDiva Software and analyzed using FlowJo v10 software.

Approximately 10,000 cells gated on forward and side scatters were acquired for each sample. The less abundant cell
population was 0.9% of the total event in the unstimulated cells.

Cells were first gated based on forward and side scatters. FSC-W vs FSC-H and SS-W vs SSC-H were used to exclude doublets.
Live cells were gated on Zombie Aqua negative cells. Lymphocytes were gated on CD19+. Naive B cells were gated using CD19
+/IgD+/CD27-/HLA-DR+/CD86-/CD38-, and activated naive B cells using CD19+/IgD+/CD27-/HLA-DR+/CD86+/CD38-.

|Z Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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